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Abstract

By exploiting a correspondence between random Regge triangulations (i.e., Regge triangulations
with variable connectivity) and punctured Riemann surfaces, we propose a possible characterization
of the SU2) Wess—Zumino—Witten model on a triangulated surface of ggnd®chniques of
boundary CFT are used for the analysis of the quantum amplitudes of the model at level
1. These techniques provide a non-trivial algebra of boundary insertion operators governing a
brane-like interaction between simplicial curvature and WZW fields. Through such a mechanism,
we explicitly characterize the partition function of the model in terms of the metric geometry of the
triangulation, and of the gsymbols of the quantum group $2J,, atQ = eV=1/3 \We briefly
comment on the connection with bulk Chern—Simons theory.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

According to the holographic principle, in any theory combining qguantum mechanics
with gravity the fundamental degrees of freedom are arranged in such a way to give a quite
peculiar upper bound to the total number of independent quantum states. The latter are
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indeed supposed to grow exponentially with the surface area rather than with the volume
of the system. The standard argument motivating such a view of the holographic principle
relies on the finitess of the black hole entropy: the number of “bits” of information that can be
localized on the black hole horizon is finite and determined by the area of the horizon. This
led 't Hooft [1] to conjecture the emergence of discrete structures describing the degrees
of freedom localized on the black hole horizon and an explicit and significant example in
the context of the S-matrix Ansatz program has been givdg]irMore recently{3], the

same author has extended these considerations much beyond the physics of quantum black
holes, speculating that a sort of “discrete” quantum theory is at the heart of the Planckian
scale scenario, resembling a sort of cellular automaton.

In view of these considerations, simplicial quantum grajdtyseems a rather natural
framework within which discuss the holographic principle. And, in this connection, some
of us have recently proposés] a holographic projection mechanism for a Ponzano—Regge
model living on a 3-manifold with non-empty fluctuating boundary. Related and very inter-
esting scenarios have been proposed alf8)irAlthough such a discrete philosophy seems
appealing, it must be said tH&{ fails short in bringing water to the mills of the holographic
principle since it is difficult to pinpoint the exact nature of the (simplicial) boundary theory
which holographically characterizes the bulk Ponzano—Regge gravity. It is natural to con-
jecture that such a boundary theory should be related with @SWZW model, but the
long-standing problem of the lack of a suitable characterization of WZW models on metric
triangulated surfaces makes any such an identification difficult to carry out explicitly. As a
matter of fact, quite independently from any holographic issue, the formulation of WZW
theory on a discretized manifold is a subject of considerable interest in itself, and its poten-
tial field of applications is vast, ranging from the classical connection with Chern—Simons
theory and quantum groups, to moduli space geometry and modern string theory dualities. It
must be stressed that there have been many attempts to characterize discrete WZW models
starting from discretized version of Chern—Simons theory (sed®)gand Turaev-Viro
model. Rather than providing yet another version of such a story, here we do not start with
Chern—-Simons (or Turaev-Viro) theory and work explicitly toward defining a procedure
for characterizing directly WZW models on triangulated surfaces.

Many of the difficulties in blending WZW theory and Regge calculus (in any of its
variants) stem from the usual technical problems in putting the dynami@svafued fields
(G a compact Lie group) on a (randomly) triangulated space: difficulties ranging from the
correct simplicial definitions of the domain of tiigfields, to their non-trivial dependence
from the topology of the underlying triangulation. A proper formulation becomes much
more feasible if one could introduce a description of the geometry of randomly triangulated
surface which is more analytic in spirit, not relying exclusively on the minutiae of the
combinatorics of simplicial methods. Precisely with these latter motivation in mind some
of us have recently lookef8,9] into the analytical aspects of the geometry of (random)
Regge triangulated surfaces. The resulting theory turns out to be very rich and structured
since it naturally maps triangulated surfaces into pointed Riemann surfaces, and thus appears
as a suitable framework for providing a viable formalism for characterizing WZW models
on Regge (and dynamically) triangulated surfadeg.(1).

The main goal of this note is to apply the resulf@fto the introduction of S(R) WZW
theory on metrically triangulated surfaces. In order to keep the paper to areasonable size and
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Fig. 1. A g-handled torus triangulated with triangles of variable edge-length, and the conical geometry around
each vertex.

in order to coming quickly to grips with the main points involved we limit ourselves here to
the analysis of the model in its non-trivial geometrical aspects (some partial results in this
connection have been announcefllid]), and to an explicit characterization of the partition
function of the theory at leval = 1. Such a patrtition function has an interesting structure
which directly involves the g-symbols of the quantum group $2Jp at 0 = eV-1n/3,
and depends in a non-trivial way from the metric geometry of the underlying triangulated
surface. Inits general features, it is not dissimilar from the (holographic) boundary partition
function discussed if5], and owing to the explicit presence of the @\, 6,-symbols one
naturally expects for a rather direct connection with a bulk Turaev-Viro model. Such a
connection would frame in a nice combinatorial set-up the known correspondence between
the space of conformal blocks of the WZW model and the space of physical states of the
bulk Chern—Simons theory. We do not reach such an objective here, nonetheless we pinpoint
a few important elements which indicate that such a correspondence does indeed extend
to our combinatorial framework. A detailed discussion of the relation with Chern—Simons
theory, which puts to the fore the particular holographic issues that motivated us, will be
presented elsewhere.

Even if still incomplete in fulfilling its original holographic motivations, our analysis of
the WZW model on a triangulated surface exploits a few intermediate constructions and
ideas that by themselves can be of intrinsic interest, since they put the whole subject in
a wider perspective. In particular, the uniformization of a metric triangulated surface by
means of a Riemann surface with (finite) cylindrical ends allows for an efficient use of
boundary conformal field theory, and provides a rather direct connection with brane theory
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(here on group manifolds). We exploit such an interpretation for providing a description of
the coupling mechanism between the (quantum) dynamics of the WZW fields and simplicial
curvature. Roughly speaking, from the point of view of the dynamics of the WZW fields,
(simplicial) curvature is seen as an exchange of closed strings between 2-branes in the
group manifold. The interaction between the various closed string channels (corresponding
to the distinct curvature carrying vertices) is mediated by the operator product expansion
between boundary insertion operators which are naturally associated with the metric ribbon
graph defined by the 1-skeleton of the underlying triangulation. Note that, by uniformizing
arandom Regge triangulation with a Riemann surface with cylindrical ends, we are trading
simplicial curvature for a modular parameter (the modulus of each cylindrical end turns out
to be proportional to the conical angle of the corresponding vertex), and one is not plugging
curvature by hands in the theory. Roughly speaking, gravity is indirectly read through the
structure of the interaction between WZW fields and the modular parameters governing
the closed string propagation between group branes. (Alternatively, by Cardy duality, one
can use an open string picture, with the cylindrical ends seen as closed loops diagrams of
open strings with boundary points constrained to the group branes. In such a framework, the
coupling with simplicial gravity can be seen as a Casimir like effect.) These remarks suggest
that simplicial methods have a role which is more fundational than usually assumed and that
they may provide a useful and reliable technique in a brane scenario. As a matter of fact, there
are strong similarities between our approach and the general philosophy which underlies
the analysis of closed/open string dualities and string field theory. This latter remark may
be the signal of a much deeper role that Regge-like calculus can play in quantum gravity:
no longer the ancillary approximation scheme fostered by a critical field theory approach,
but rather a full dynamical role as a building block for explicitly constructing the coupling
between quantum geometry and quantum matter fields.

Let us briefly summarize the content of the paper. First, a preliminary remark on the
notation which may appear heavy and rather demanding on the patience of the reader. The
dichotomy between an oversimplified and a cumbersome notation is often encountered in
boundary conformal field theory (BCFT), where fields and operators typically carry hid-
den labels which, if not identified, make the interpretation of a specific result quite hard.
Moreover, blending BCFT with the combinatorics of triangulated surfaces does not make
such a situation any easier. Our choice of notation is motivated by an effort in making our
computations explicit and algorithmic as far as possible. In any case, we hope that the many
detailed pictures we inserted in the paper will at least alleviate the notational burden we
impose on the reader.

In Section 2 after providing a few basic definitions, we recall the main resul{8 &
which feature prominently in the construction of the WZW model on a Regge (and/or dy-
namical) triangulation. Here we introduce the correspondence between metric triangulated
surfaces and the uniformization of a Riemann surface with cylindrical ends which is at the
heart of the paper.

In Section 3ve discuss how we can naturally associate £3W2ZW modelto a (random)
Regge triangulation. The basic idea is to formulate WZW on the Riemann surface associated
with the triangulation. In this way one can exploit all the known techniques of standard (i.e.,
continuum) WZW theory, and at the same time keep track of the relevant discrete aspects of
the geometry of the original triangulation. A delicate point here concerns the imposition of
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suitable boundary conditions for the WZW fields at the cylindrical ends of the surface (the
request for such boundary conditions cannot be avoided: it is a reflection of the fact that
we cannot arbitrarily specify a WZW field at a conical vertex, there are monodromies to be
respected). Our choice of boundary conditions is based on the remarkable analysis of the
boundary value theory of the WZW model due to @alzki[11]. We discuss in detail all
the steps needed for a proper characterization of the Zumino—Witten terms. As is known,
this requires keeping track of the ambiguities in dealing with the extension of WZW maps
to a three-dimensional bulk manifold bounded by the given Riemann surface. Such analysis
naturally provides the proper set-up for moving to the quantum theory

In Section 4ve discuss the quantum amplitude of the model at levell (the reason for
such arestriction are basically representation theoretic). By analyzing a natural factorization
property of the WZW partition function on triangulated surface, we show how to exploit the
results of12] in order to characterize the quantum amplitudes on each cylindrical end. We
then discuss how such amplitudes interact along the ribbon graph associated with the under-
lying metrical triangulation. The set-up in this part of the paper may appear quite intricate
and perhaps a few words of explanation of the general philosophy may be useful. Roughly
speaking, one may say that our construction of the classical WZW theory on a (random)
Regge triangulation amounts in glueing together WZW fields defined on punctured disks.
The glueing in question is explicitly realized by analytical transition maps encoding the
geometry of the ribbon graph associated with the underlying triangulation. Moving to the
quantum theory, the classical WZW fields on each punctured disk get replaced by their
quantum amplitudes on each cylindrical end. The classical transition functions parame-
terized by the ribbon graph are now replaced by appropriate boundary insertion operators
which must satisfy a number of consistency conditions (analogous to the cocycle condition
of ordinary transition functions in complex surface theory). Such consistency conditions
requires a rather detailed analysis of boundary insertion operators and of their operator
product expansions along the vertices and edges of the ribbon graph. Here we are basically
dealing with an application of well-known sewing constraint techniques in boundary CFT
(relevant references for this part of the paper[aB=-15). In a rather precise sense, this is
the set-up of the quantum geometry of WZW fields on a non-trivial geometrical background.
In our case, the check up of the consistency condition for having a well-defined quantum
geometry is rather simple. In particular, we can exploit the connection between the OPE
coefficient of our boundary insertion operators and tlisynbols of the quantum group
SU(2)¢ [15,16] Armed with this correspondence, we can easily factorize the correlator
of boundary insertion operators along the channels associated with the edge of the ribbon
graph, and evaluate the partition function of the theory at level 1. We conclude the
paper wih a a fewremarks on the nature of such partition function indicating some of the
features which corroborate its natural connection with the Turaev-Viro counterpart of the
bulk Chern—Simons theoffL7].

2. Uniformizing triangulated surfaces

Let M denote a closed two-dimensional oriented manifold of genus (generalized)
random Regge triangulatidB] of M is a homeomorphisnT;| — M whereT denote a
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two-dimensional semi-simplicial complex with underlying polyhedrbhand where each
edges(h, j) of T is realized by a rectilinear simplex of variable length, j). Note that
since T is semi-simplicial, the star of a verteX(j) € T (the union of all triangles of
which (/) is a face) may contain just one triangle. Note also that the connectivify of
is not a priori fixed as in the case of standard Regge triangulation$g(stw details). In
such a setting a (semi-simplicial) dynamical triangulatin,| — M is a particular case
[18] of a random Regge PL-manifold realized by rectilinear and equilateral simplices of a
fixed edge-lengtli(h, j) = a, for all the N1(T) edges, wher&V;(T) € N is the number of
i-dimensional subsimplices (-) of T. Consider the (first) barycentric subdivisidt® of
|T;| — M. The closed stars, in such a subdivision, of the vertices of the original triangulation
|T;| — M formacollection of2—cell$p2(i)}f\':°{7) characterizing theonical Regge polytope
|Pr;| — M (and its rigid equilateral specializatid®Pr,| — M) barycentrically dual to
|T;| — M. The adjective conical emphasizes that here we are considering a geometrical
presentatior P;| — M of P where the 2-ce||3p2(i)}fV:°iD retain the conical geometry
induced on the barycentric subdivision by the original metric structuf&;pf> M. This
latter is locally Euclidean everywhere except at the veraCgshebones) where the sum of
the dihedral angle®(c2), of the incident triangles?’s is in excess (negative curvature) or
in defect (positive curvature) with respect to theflatness constraint. The corresponding
deficit anglee is defined bye =27 — ) > 6(c?), where the summation is extended to
all two-dimensional simplices incident on the given barfe In the case of dynamical
triangulationd18] the deficit angles are generated by the number§(#/z,N/', k) L 6%k}
of triangles incident on th&(T) vertices, theurvature assignments, {q(k)}ki(ln € NNo(D,
in terms of which we can write(k) = 2w — ng(k)/3.

It is worthwhile stressing that the natural automorphism group Awtof | P7,| — M
(i.e., the set of bijective maps preserving the incidence relations defining the polytopal
structure) is the automorphism group of the edge refinergste[19]) of the 1-skeleton
of the conical Regge polytod®r,| — M. Such al” is the 3-valent graph

N1(D N1i(D
r=0h, j. o} [ ] twa, ) ot Y| o DY (1)

where the vertex se®(k, j, k)}¥2(D is identified with the barycenters of the triangles
(6%, j, )}V2D e |Tj| - M, whereas each edgg (i, j) € {pt(h, j)}(D is generated
by two half-edgep!(h, j)* andp(h, j)~ joined through the barycentef® (k, j)}M(D of
the edgegol(h, j)} belonging to the original triangulatidi;| — M. The (counterclock-
wise) orientation in the 2-cellg?(k)} of | Pr;| — M givesrise to a cyclic ordering on the set
of half-edgegpl(h, j)*}V1(D incident on the verticeg®(h, j, k)}N2(D . According to these
remarks, the (edge-refinement of the) 1-skeletopPgfi — M is a ribbon (or fat) graph
[19], viz., a graph” together with a cyclic ordering on the set of half-edges incident to each
vertex of I". Conversely, any ribbon grapfi characterizes an oriented surfadéln) with
boundary possessirgas a spine (i.e., theinclusidh— M(I) isahomotopy equivalence).
In this way (the edge-refinement of) the 1-skeleton of a generalized conical Regge polytope
| Pl — M is in a one-to-one correspondence with trivalent metric ribbon grafigs3).

As we have shown if8,9] it is possible to naturally relax (in the technical sense of the
theory of geometrical structur¢®0]), the singular Euclidean structure associated with the
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Fig. 2. The ribbon graph associated with the barycentrically dual polytope.

conical polytopé Pr,| — M to a complex structur€M; No), C). Such arelaxing is defined
by exploiting[19] the ribbon graph™ (see(1)), and for later use we need to recall some of
the results of9] by adopting a notation more suitable to our purposescBét), p2()),
and p2(k), respectively, be the 2-cells | Pr;| — M barycentrically dual to the vertices
o%(h), 6°(j), ando®(k) of a triangles?(h, j, k) € |Tj| — M. Letus denote byl(h, j) and
p(j, h), respectively, the oriented edges@ih) andp?(j) defined by

pt(h, ) U pt m=0p*(h)() 0% (), 2
r

i.e., the portion of the oriented boundaryldintercepted by the two adjacent oriented cells
p?(h) and p2(j) (thuspl(h, j) € p?(h) andpl(j, k) € p?(j) carry opposite orientations).
Similarly, we shall denote by°(k, j, k) the 3-valent, cyclically ordered, vertex bfdefined

by (Fig. 3

. Pty

Fig. 3. The 2-cells, the oriented edges, and the oriented vertices of the conical dual polytope.
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PO(h, j, ky=3p> () > () ) d0* (). €)

r r

To the edget (i, j) of p?(h) we associatfl9] a complex coordinate(’, j) defined in the
strip

U, y={z(h, j) € C|0 < Rez(h, j) < L(h, )}, 4

L(h, j) being the length of the edge considered. The coordiméke j, k), corresponding
to the 3-valent vertex%(h, j, k) € p?(h), is defined in the open set

Ujoq jay={w(h, j.k) € Cllw(h, j. k)| < 8, w(h, j. D[°h, j. k)] = O}, (5)

wheres > 0 is a suitably small constant. Finally, the generic 2-pé{k) is parameterized
in the unit disk

U 2g={k) € Cl|2k)| < 1, 2(k)[o°(k)] = 0}, (6)

whereo®(k) is the vertexe |T;] — M corresponding to the given 2-cell. We define the
complex structuré(M; No), C) by coherently gluing, along the pattern associated with the

ribbon graphr”, the local coordinate neighborhoo{iﬁpo(h,jyk)}gf%, {Upl(h,j)}gj’l(/.?, and
{U 21, }?,’f)’m. Explicitly (se€[19] for an elegant exposition of the general theory ghé] for
the application to simplicial gravity), 16U 1, j} {U 10} AU 1 k.1 } b€ the three generic
open strips associated with the three cyclically oriented e@ddés j), p(j, k), p*(k, h)
incident on the vertex°(h, j, k). Then the corresponding coordinates, ), z(j, k), and
z(k, h) are related tav(h, j, k) by the transition functions

z(h, )23,
wih, j, k) = { e@/3IV=17(j k)2/3, @)
e(47r/3)\/jlz(k7 h)z/s.

Similarly, if {Upl(hJﬂ)}, B =12, ...,q(k) are the open strips associated with t{&)

(oriented) edgego? (4, Jjp)} boundary of the generic polygonal cefl(h), then the transition
functions between the corresponding coordirggte and the{z (%, jg)} are given by [19]

2 1 v—1
;<h>=exp( ’Z(‘h) (ZL(h,jﬂHz(h,jv))), v="1,...,q0h), (8)
B=1

with 22;11 -=0 forv = 1, and wherd. (k) denotes the perimeter 6t (h)). By iterating
such a construction for each vertgf(h, j, k)} in the conical polytop¢Pr,| — M we get
a very explicit characterization ¢fM; No), C).

Such a construction has a natural converse which allows us to describe the conical Regge
polytope|Pr,| — M as a uniformization of(M; No), C). In this connection, the basic ob-
servation is that, in the complex coordinates introduced above, the ribbongraguarally
corresponds to a Jenkins—Strebel quadratic differegtiaith a canonical local structure
which is given by[19] (Fig. 4
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|PrjM

Fig. 4. The complex coordinate neighborhoods associated with the dual polytope.

¢(h)| p1ny = dz(h) ® dz(h),

()00 = Fw() dw()) ® dw()),

0K
422 (k)

o= 9)

¢ 21y = de(k) ® di(k),

whereL (k) denotes the perimeter 6fp?(k)), and whereo®(h, j, k), p*(h, j), p?(k) run
over the set of vertices, edges, and 2-cellsRf — M. If we denote by
Ar={¢k) € CJ0 < [¢(k)| < 1}, (10)

the punctured disk\; C U 2, then for each given deficit angigk) = 27 — 6(k) we can
introduce on each; the conical metric

62, = LOL 1y 20727 80 = (508 ROR/20) | (11)
B= " 472 = P2(k) 1>
where
_[LwP? 2
(k) 2y | = WI dz(k)| 12)

is the standard cylindrical metric associated with the quadratic differerialz ,, (Fig. 5).
In order to describe the geometry of the uniformizatioq(®f; Ng), C) defined bxdsfk)},
let us consider the image ifiM; No), C) of the generic triangle?(h, j, k) € |Tj)| - M
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Fig. 5. The cylindrical and the conical metric over a polytopal cell.

of sidesol(h, j), o1(j, k), andol(k, k). Similarly, let W(k, j), W(j, k), and W(k, h) be
the images of the respective barycenters (48 Denote byL (k) = |W(h, j)p°(h, j, k),
L(h) = |W(j, k)p°(h, j, k)|, and L(j) = |W(k, h)p°(h, j, k)|, the lengths, in the metric
{ds(zk)}, of the half-edges connecting the (image of the) vep®, j, k) of the ribbon
graphI” with W(h, j), W(j, k), andW(k, h). Likewise, let us denote ke, o) the length of
the corresponding side' (e, o) of the triangle. A direct computation involving the geometry
of the medians of2(h, j, k) provides Fig. 6)

Fig. 6. The relation between the edge-lengths of the conical polytope and the edge-lengths of the triangulation.
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L2(j) = 512G, k) + f512(h, j) — 351%(k. h),
L2(k) = &1P(k, ) + 3502 k) — Z12(h, ).
1

L2(hy = &1%(h, j) + &Pk, h) — &12(j. b,
2(k, h) = 8L%(h) + 8L%(k) — 4L2(}),
12(h, j) =8L2(j) + 8L2(h) — 4L%(k),

12(j. k) = 8L?(k) + 8L2(j) — 4L%(h), (13)
which allows to recover, as the indicé@s j, k) vary, the metric geometry oPr,| — M and
of its dual triangulation?;| — M, from (((M; Np), C); {ds(zk)}). In this sense, the stiffening
[20] of ((M; Np), C) defined by the punctured Riemann surface

N2(T) N1(T) No(T)
((M; No),O: {dsioD = | Upujw U Unay U A5 ds%)  (14)
{PO(h, j.k)} {pL(h, )} {p?(k)}

is the uniformization of (M; Np), C) associatefB] with the conical Regge polytop&;| —
M (Fig. 7).
Although the correspondence between conical Regge polytopes and the above punctured
Riemann surface is rather natural there is yet another uniformization representation of
| P;| — M which is of relevance in discussing conformal field theory on a gign— M.

ak)l \
I UpiK)

Fig. 7. The decorated punctured Riemann surface associated with a random Regge triangulation.
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The point is that the analysis of a CFT on a singular surface suglf;ps> M calls

for the imposition of suitable boundary conditions in order to take into account the conical
singularities of the underlying Riemann surfa¢&f; No), C, ds(zk)). This is arather delicate
issue since conical metrics give rise to difficult technical problems in discussing the glueing
properties of the resulting conformal fields. In boundary conformal field theory, problems
of this sort are taken care of (see g1dL]) by (tacitly) assuming that a neighborhood of the
possible boundaries is endowed with a cylindrical metric. In our setting such a prescription
naturally calls into play the metric associated with the quadratic differeftahd requires

that we regularize into finite cylindrical ends the conas, ds(zk)). Such aregularization is
realized by noticing that if we introduce the annulus

Afgy=(t(k) € Cle @770 < |¢k)] < 1) € U o), (15)
then the surface with boundary

My=((My: No).C) = | J U0 |J Uty (A 2(K)) (16)

defines the blowing up of the conical geometry(@; No), C, ds(zk)) along the ribbon graph
I (Fig. 8).

The metrical geometry qu;(k), ¢(k)) is that of a flat cylinder with a circumference of
length given byL (k) and height given byL(k)/6(k) (this latter being the slant radius of
the generalized Euclidean coqay, ds(zk)) of base circumferenceé(k) and vertex conical
angled(k)). We also have

No

) No ()
oMy = U S, 1, o= us 17
d i1 0(k) P ( )

Fig. 8. Blowing up the conical geometry of the polytope into finite cylindrical ends generates a uniformized
Riemann surface with cylindrical boundaries.
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where the circles
S =1eth) € Clig)| = e @0y gl =(e(k) € Clgh] = 1, (18)

respectively, denote the inner and the outer boundary of the anmg(l,g Note that
by collapsingsS +§ to a point we get back the original conesy, ds? W) Thus, the sur-
face with boundary; naturally corresponds to the ribbon graﬁhassomated with the
1-skeletonkK1 (| P1;| — M) of the polytopd Pr;| — M, decorated with the finite cylinders
{A |¢>(k)|} In such a framework the conical anglggk) = 2n — ¢(k)} appears as
(reC|procaI of the) modulin of the annuli{ A5},

1 1 1
(recall that the modulus of an annulug < |¢] < r1 is defined by(1/27) In(r1/r0)).
According to these remarks we can equivalently represent the conical Regge polytope
| Pr;| — M with the uniformization(((M; No), O); {dsfk)}) or with its blowed up version
My.

3. TheWZW model on a Regge polytope

Let G be a connected and simply connected Lie group. In order to make things simpler
we shall limit our discussion to the caée = SU(2), this being the case of more direct
interest to us. Recalll1] that the complete action of the Wess—Zumino-Witten model on
a closed Riemann surfadé of genusg is provided by

SWZW () = tr(h~ton)(h~1on) + SV (n), (20)

K
Ao/ =1 Jm

whereh : M — SU(2) denotes a S(2)-valued field onM, « is a positive constant (the
level of the model), ) is the Killing form on the Lie algebra (normalized so that the root
has lengthy/2) ands"Z(n) is the topological Wess—Zumino term need] in order to
restore conformal invariance of the theory at the quantum level. Explisitf§(4) can be
characterized by extending the fidld M — SU(2) to mapsﬁ : Vu — SU(2) whereVy,

is a three-manifold with boundary such ttsafy; = M, and set

SWZopy — K f i* ’ 21

(h) s T, XSUR) (21)
whereh* xsu2) denotes the pull-back t8), of the canonical 3-form on S@2)

xsu@=3tr(h~tdh) A (htdh) A (h~Tdh) (22)

(recall that for SW2), xsucz) reduces to 4¢3, whereu gz is the volume form on the unit
3-spheresd). As is well known,SWZ (k) so defined depends on the extensionthe am-
biguity being parameterized by the period of the foxguy) over the integer homology

H3(SU(2)). Demanding that the Feynman amplitudé e ™ is well defined requires that
the levelk is an integerFig. 9).
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Fig. 9. The geometrical set-up for the WZW model. The surfadcepens up to show the associated handlebody.
The group SW2) is here shown as the 3-sphere foliated into (squashed) 2-spheres.

3.1. Polytopes and the WZW model with boundaries

From the results discussed$ection 2 it follows that a natural strategy for introducing
the WZW model on the Regge polytop;| — M isto consider maps: My — SU(2) on
the associated surface with cylindrical boundamgs=((Mj; No), C). Such mapé should
satisfy suitable boundary conditions on the (inner and outer) boundﬁﬁgs of the annuli
{A;(k)}, corresponding to the (given) values of the@WUield on the boundaries of the cells
of | Pr;| — M and on their barycenters (the field being free to fluctuate in the cells). Among
all possible boundary conditions, there is a choice which is particularly simple and which
allows ustoreduce the study of WZW model on each given Regge polytopes to the (quantum)
dynamics of WZW fields on the finite cylinders (annl{m;(k)} decorating the ribbon graph
I' and representing the conical cells|&f;| — M. Such an approach corresponds to first
study the WZW model ohPr,| — M as a CFT. Its (quantum) states will then depend on the
boundary conditions on the $p) field 2 on {Sé(iki }; roughly speaking such a procedure turns
out to be equivalent to a prescription assigning an irreducible representation®f ®U
each barycenter of the given polytoj#®y,| — M. Such representations are parameterized
by the boundary conditions which, by consistency, turn out to be necessarily quantized.
They are also parameterized by elements of the geomet®;gf — M, in particular by
the deficit angles.

In order to carry over such a program, let us associate with each inner bonﬂé@#ﬂye
SU(2) Cartan generator

i
A,si)og with o3 = 10 , (23)
K 0 -1

where, for later convenienci(i) € R has been normalized to the leweland let

=y 1yl e su) (24)
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Fig. 10. The geometrical set-up for $2) boundary conditions on eachg(k), ¢(k)) decorating the 1-skeleton of
|Pr;| — M. For simplicity, the group S(2) is incorrectly rendered; note that each circumfereﬁifds actually
a 2-sphere (or degenerates to a point).

denote the (positively oriented) 2-sphe§§i> in SU(2) representing the associated con-
jugacy class (note tha(t'f“ degenerates to a single point for the center ofBY Such
a prescription basically prevent out-flow of momentum across the boundary and has been
suggested, in the framework of D-branes theory2B] (see alsd11]). Similarly, to the
outer bo@arys‘;g)) we associate the conjugacy cla§§ ) = C}“ describing the conjugate
2-sphere§§-(i) (with opposite orientation) in S{2) associated WitISg-(l.). Given such data,
we consider maps : My — SU(2) that satisfy the fully symmetric boundary conditions
[23] (Fig. 10,

h(Sss) € €. (25)

Note that sinceC,.(Jr) and Cl.(_) carry opposite orientations, the functiohssé?lF;) are

normalized toh(Séa)))h(Séa’.))) = e (the identitye SU(2)). The advantage of considering

this subset of mapk : My — SU(2) is that when restricted to the boundax/; (i.e., to
the inner conjugacy classé$+)), the 3-formysuz) (22) becomes exact, and one can write
xsu@)lc; = dw;, (26)
where the 2-formw; is provided by
w; = tr(y~dy) Vi (L dy) e 2L @27)

In such a case, we can exteid] the maph : M3 — SU(2) to a mapfz . (M; Np),C) —
SU(2) from the closed surfac&M; No), C) to SU(2) in such a way thak (y;)) C Cl.(“,
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Fig. 11. The maps defining the WZW model on a random Regge triangulation. The small cube and the small
square are pictorial renderings of the Maurer—Cartan 3-fegow) and of the 2-formw; in SU(2), respectively.
We also show the capping diskg ).

where

8o =1¢(i) € Cl1¢(h)| < & @7 (28)
is the disk capping the cylindrical er{d\;(i), lp ()|} (thusddey = Sé:g andAg(i) U 8g) =~
Upz(,.)). Inthis connection note thatthe boundary conditibﬁéz))) C Cl.(“ define elements
of the loop groupFig. 11

L) SUQR)=Map(Sy; . SU(2)) =~ Map(s*, SU(2)). (29)

Similarly, any other extensioif = hig (g € SU(2)) of h over the capping disk®;), can be
considered as an element of the group Kgp ., SU(2)). In the same vein, we can interpret
h; = (h;, h}) as a map from the spherical double (see belSpf 54 into SU2), i.e.,
as an element of the group I\/I(zﬂfr SU(2)). It follows that each possible extension of the

boundary conditiorh(Ség))) fits into the exact sequence of groups

1— Map(SZ, SU(2)) — Map(8y). SU2)) — Map(Sy;). SU2) — 1. (30)



G. Arcioni et al./ Journal of Geometry and Physics 52 (2004) 137-173 153

Map(sém suU(2)

Fig. 12. The chain of maps giving rise to the loop group Wﬁ; SU(2)) and to the associated exact sequence.
The various spaces of maps involved are pictorially rendered by multiple arrows.

In order to discuss the properties of such extensions we can proceed as follows (see
[11] for the analysis of these and related issues in the general setting of boundary CFT)
(Fig. 12.

Let us denote by, with aVy; = (M, Np); C), the three-dimensional handlebody asso-
ciated with the surfac&M, Np); C), and corresponding to the mappihAng (M, Ng); C) —
SU(2) ~ S3 thought of as ammmersion in the 3-sphere. Since the conjugacy clascsjé@
are 2-spheres and the homotopy grogfgSU(2)) is trivial, we can further extend the
mapsh to a smooth functiorl : Vi — SU(2) (thus, by constructior (8y)) ¢ C'1).
Any such an extension can be used to pull-back to the handleigpdire Maurer—Cartan
3-form xsy(z) anditis natural to define the Wess—Zumino term associated @ithNo); C)
according to

No
K A K ~
Z (h, H)= / H* xsu) — / hls, @j. (31)
lPTl /-1 Jvy, @ 471«/—1]2:; 80() %op

In general, such a definition cﬁl"}lz (h H) depends on the particular extensumsH)

we are considering, and if we denote@zy = hg, H'), g € SU(2), a different extension,
then, by reversing the orientation of the handleb&gyand of the capping disk& ;) over
which Sl"}o’zl(h/ H’) is evaluated, the difference between the resulting WZ terms can be
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written as

iy (h H) = Sipp (W', H)
= H* xsu ~I—/ H"™ xsue)
4nv—1\Jv, " e

No
— K 7k . /1% .
=Py (/50@ o+ [, 10, wf> ‘ (32)

0(j)
Note that
Vu, DU (Vi) HY) = (Vg H) (33)
is the 3-manifold (ribbon graph) double ®f,; endowed with the extensioH=(H, H’)
and
@y hj) U ) 1) = (2. k) (34)

are the 2-spheres defined by doubling the capping digks decorated with the extension

J_(h], h/) € C(+) By construction(Vy,, H) is such thad(Vy,, H) = UN"l(SZ, hj) so
that we can equwalently write82) as

No
h B W H S /iz* 5
S\pg (. H) = Sig7 (' H') = 47“/— H*xsu) 471\/—_1; g ®;
(35)

To such an expression we add and subtract

No
K ~
- H: , 36
T 1 ;:1: /B ) 1 xSU(2) (36)

where B3 are 3-balls such thaﬁtB]3 12(_) (the boundary orientation is inverted so that
we can glue sucls? to the corresponding boundary componentvm andH are corre-
sponding extensions df with H; |S2 = h SinceVy U B results in a closed 3-manifold
W3, we eventually get

|PT|(h H) |PT|(77)(h/ H')

No
K - K - -
A/ —1 Jws XSU@ Ar—1 j;l ( 5 Jj XSU® 53 /) (37)

where we have rewritten the integrals oS%appearing if35)asintegrals ove?B? = Sf(_)
(hence the sign change). This latter expression shows that inequivalent extensions are
parameterized by the periods Ofsu), w;) over the relative integer homology groups

H3(SU(2), uj.vglc 7). Explicitly, the first term provides
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T s = =y (39

Since [ xsu@ = 8r?, we get

K -
H* = -2/ —1.
i /W3 XSU@)

Each addend in the second group of terms yields

K ~ ~
—_— HY suz—/ h*w; / suz—/ wj|.
4r/ -1 (/Bf JXSU@ 083 ! 47w Hj(BY) Hsu@ h(@B%) ’

(39)

The domain of |ntegrat|oh(8B3) is the 2-spher€’; C SU(2) associated with the given
conjugacy class, whereais (B?) is one of the two three-dimensional balls in @Jwith
boundar;C, InthedeflnlngrepresentatlonofSZU {xo|+\/_2xk(rk|xo+2xk =1},
the conjugacy classe&s; are defined byo = cos(2rA(j)/x) with 0 < (27A())/x) < 7,
whereas the two 3-ba||§j(B§?) bounded byC; are defined by > cos(27A(j)/«x) and
xo < cos(2zA(j)/x). An explicit computatiorf11] over the ballxg > cos(27A(j)/«)
shows that(39) is provided by—4mi(j)~/—1, and by 4v/—1((k/2) — A())) for xg <
cos(2A(j)/«x), respectively. From these remarks it follows that

S\be (b, H) = S)p2 (W', H') € 2n3/=12, (40)

as long ax is an integer, and & A(j) < (:c/2) with A () integer or half-integer; in such a
case the exponential of the WZ teﬂ‘ﬁg’z| (h, H)is independent from the chosen extensions
(h, ), and we can unambiguously wrlﬂ%‘}!zl(h) (Fig. 13. It follows from such remarks

that we can define the SB) WZW action on| Pr,| — M according to

WZW( h)=

S\br] tr(h = oh) (h™ o) + Sp7 (), (41)

47w ((M;No),0)

where the WZ terrlsl"l‘.!Tle (n) is provided by(31). It is worthwhile stressing that the condition

0 < A(j) = (x/2) plays here the role of a quantization condition on the possible set
of boundary conditions allowable for the WZW model [@fy,| — M. Qualitatively, the
situation is quite similar to the dynamics of branes on group manifolds, where in order to
have stable, non-point-like branes, we need a non-vanishifigld generating a NSNS
3-form H (see e.g[24]), here provided by»; and xsu(z), respectively. In such a setting,
stable branes on SQ) are either point-like (corresponding to elements in the cehtesf

SU(2)), or 2-spheres associated with a discrete set of radii. In our approach, such branes
appear as the geometrical loci describing boundary conditions for WZW fields evolving
on singular Euclidean surfaces. It is easy to understand the connection between the two
formalism: in our description of the-level SU2) WZW model on|P;| — M we can
interpret the SI2) field as parametrizing an immersion |d#t;;| — M in 53 (of radius

~ J/«). In particular, the annulit} 8G) associated with the ribbon graph boundafi#®s} can
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Fig. 13. A pictorial rendering of the glgeing of two copies of the handlebdgyassociated with the surfadé.
The resulting all-enveloping 3-manifold,, has a boundary consisting of the (disjoint) 2-sphé?l?e§enerated by

the glueing of the corresponding capping diskg . By filling such 2-spheres with 3-baIBf we obtain a closed
3-manifold w3.

be thought of as sweeping out #% closed strings which couples with the branes defined
by SU(2) conjugacy classes.

4. Thequantum amplitudesat k = 1

We are now ready to discuss the quantum properties of the fieidsolved in the
above characterization of the &) WZW action on|Py;| — M. Such properties follow

by exploiting the action of the (central extension of the) loop group d\ﬂﬁ;} SU2))
generated, on the infinitesimal level, by the conserved currents
J@@n=— kdphih*,  T@@)=xh; Bhi, (42)

where d)=0.). By writing J(¢(i)) = J*(¢(i))o,, we can introduce the corresponding
modesJ¢ (i), from the Laurent expansion in each dik;,

TGy =Y ey ") (43)
nez

(and similarly for the modeg? (i)). The operator product expansion of the curreiftg(i))
JAL (i) (with ¢(i) andZ’ (i) both insg;)) yields[11] the commutation relations of an affine
5u(2) algebra at the leve, i.e.

[JE@), T (D] = vV =1eabc 51, (D) + Kndabdntm.0. (44)

According to a standard procedure, we can then construct the Hilbert&paessociated
with the WZW fieldsh; by considering unitary irreducible highest weight representations
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of the two commuting copies of the current algebig?) generated by'“(¢(1))] ¢+ and
0(i)

]“(Z(i))|s<+). Such representations are labeled by the lewahd by the irreducible repre-
(i)

sentations of S(2) with spin 0 < A(i) < (x/2). Note in particular that fox = 1 every
highest weight representation ©f(2),—; also provides a representation of Virasoro alge-
bra Vir with central charge = 1. In such a case the representationsig®),—1 can be
decomposed inteu(2) & Vir, and, up to Hilbert space completion, we can write

L (n+1(0) o T (+A3)) Vir - Vir
Ho = OSA(i)Sl%,OSnSoo Vo @ Vauy ) ® Ry © Haeain?)- - (49)

(n+1())

where Vsu(Z) denotes the2i(i) + 1)-dimensional spim.(i) representation ofu(2),
and?'nl\(grﬂ(l.))2 is the (irreducible highest weight) representation of the Virasoro algebra of
weight(n + A(i))2. Since 0< A(i) < 1/2, itis convenient to set

Jiz=n + () € 37+ (46)
(with 0 € Z™), and rewritg(45) as

Ho= &  (Vip®Vl,)e Hy ® 7_{3{-2") (47)

JiJi€(/DZF

with j; + J; € ZT [25]. Owing to this particularly simple structure of the representation
spaced;, we shall limit our analysis to the case= 1.

Since the boundary @M of the surfaceM is defined by the disjoint unionSé:;; and the
boundaryaI” of the ribbon graph™ is provided byuSH it follows that we can associate

LON
to bothaM andaI” the Hilbert space l

HOM) ~ H(I) = %’l}z@. (48)

Letusdenote bsz(S(gg)) )) € H) the Hilbert space state vector associated with the boundary
conditionfz(Ség))) on theith boundary componemé)z;)) of M. According to the analysis of

the previous section, the ribbon graph doubjg generates a Schottkd® double of the
surface with cylindrical boundarie®; (MP is the closed surface obtained by identifying
M with another copyM}, of M; with opposite orientation along their common boundary

uSézl’.))). SuchMP carries an orientation reversing involution

T:MP - MP r?=id (49)
that interchanged/; and M}, and which has the boundaLySéz;)) as its fixed point set.

The request of preservation of conformal symmetry alnﬁé{;)) under the anticonformal

involution T requires that the staﬂé(Séz;)))) must satisfy the glueing conditiofi., —
L_n)lh(Sy;)) = 0, where, fom # 0,
1 oo
=i 2 Dl (50)

m=—0oQ
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and similarly forL_,. The glueing conditions above can be solved mode by mode, and
to each irreducible representation of the Virasoro algéb)‘_'zé and its conjugatétl\;gr: 2

labeled by the giveri;=n + A (i) € (1/2)Z7, we can associate a set of conformal Ishibashi

states parameterized by the(2) representationvﬁf;(z) ® stfl(z). Such states are usually
denoted by

|ji;m9n>>a m7n€(_ji,_ji+l,... ,ji—l,ji) (51)
and one can writgl 2]
[ p— > DRSS i m.n)) (52)
6077 T o(1/4) m,n ()1 Ji> M, ,
Jism,n
where
min(j;—m, ji+n)

e [Gii +m)! (i — m)! (i + m)! (i — m)1]2
D (r(Syiy)) = 2 Gi—m —=D'Gi +n— DU (m —n +1)!

I=max(0,n—m)
x aji+n—ldji—m—lblcm—n+l (53)
is the V;L(Z)-representation matrix associated with the(3klement
rooy _[(a b )
h(Seiy) = <C d) e C; (54)

in the " conjugacy class.
4.1. The quantum amplitudes for the cylindrical ends

With the above preliminary remarks along the way, let us consider explicitly the structure
of the quantum amplitude associated with the WZW model defined by the @ﬁflﬁﬁﬁ(h).

Formally, such an amplitude is provided by the functional integral

_SWZW iy

|0M, @ (S5)) = / ) ., e " Dh, (55)
{hl ) €C™)

o(i)

where the integration is over maf)Satisfying the boundary CO”ditiOﬁé'S(i) € C,.(i)},
0(i)

and where R is the local producf] ¢ . no).c) 91(2) Over((M: No). C) of the SU2) Haar
measure. As the notation suggests, the formal expre@sigtakes value in the Hilbert space
H. Let us recall that the fields are constrained over the disjoint boundary components of

aI" to belong to the conjugacy class{éf;SH € Cf_)}. This latter remark implies that the
0(i)

mapsfz fluctuate on theVy finite cyIinders{A;(i)} whereas on the ribbon graghthey are
represented by boundary operators which mediate the changes in the boundary conditions on
adjacent boundary componeréd’;} of I". In order to exploit such a factorization property
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of (55) the first step is the computation of the amplitude (for each given ingdar the

cyIinderA;(,.) with in and out boundary conditiorfﬂs(i) € Cl.(i),
0(i)

_ QWZW (7. A% ~
Zay= f e 5 i) ph, (56)
O il ec®
1

whereSWZW (i Aj i) is the restriction taA} ;) of Sl"gTZ[‘lN(fz). If we introduce the Virasoro
operatofLg (i) defined by

2 o0
Lot) = 5 2 4n (7500 (57)

m=0

and notice that.q(i) + Lo(i) — (c/12), defines the Hamiltonian of the WZW theory on the
cylinder A3 ) (c = 3x/(2+ x)) being the central charge of the &) WZW theory), then
we can explicitly write

Z 4x ({Ci(i)}) — (fAl(Sé(_i)))|e_(h/e(i))(LO(i)+L°(i)_(6/12))|il(5é?;)))), (58)

0(i)
where(fz(Ség)) )| andlfz(Ség)) )), respectively, denote the Hilbert space vectors associated with

the boundary conditiorﬂs(S(g(’l.))) andh(Ség))) and normalized tQﬁ(S(gg)))||ﬁ(S§:;)))) =1(a
(+)

normalization that follows from the fact thétS(gg))) andfz(S(,(l.)) belong, by hypotheses,

to the conjugated 2—spheré§:’) andCl.(“ in SU(2)) (Fig. 14).

The computation of the annulus partition functi@8) has been explicitly carried out
[12] for the boundary S(2) CFT at level« = 1. We restrict our analysis to this particular
case and if we apply the results [aP] (see in particular Eqg. (4.1) and the accompanying
analysis) we get

Fig. 14. A pictorial rendering of the set-up for computing the quantum amplitudes for the cylindrical ends associated
with the surface)M.
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1 I A g
(=75 3 Dol s
Jji€(/2)Z m.n

x DJi  (R(Syi x40, (59)

Z
Ay

where
e (4n/0() 7 _ o (4r/6))(ji+1)?

inz (e*(4n/9(l))) — (e @) (60)
is the character of the Virasoro highest weight representation, and
o
n(@=¢"* [Ta-q" (61)

n=1

is the Dedekind)-function.
By diagonalizing we can Considbrl(Séa)))h(
in SU(2), i.e., we can write

A /=10 (i)
hHSGHRSSE) = (e ° ) (62)

S(+)

o)) @s an element of the maximal torus

o) 6(i) 0 e 4V/=TA()

and a representation-theoretic computafiti?] eventually provides
e (4n/0()) j?

1 . .
(CE) = — Z cos(&li))W'

Z px
V2 Je/2)Zy

5o (63)

(Note thatx in [12] corresponds to our@/—1A(i), hence the presence of a@srj;A(i))
in place of their cosii2j;a(i)).)
An important point to stress is that, according to the above analysis, the partition function

ZA% ({Cl.i}) can be interpreted as the superposition over all posgilslzannel amplitudes

e (4r/6()) 2

1
i — A(j)=— COS(SﬂjiA(i))m (64)

NZ)
that can be associated to the boundary compdiéinf the ribbon grapti”. Such amplitudes
can be interpreted as the variojis= (n + A(i)) (0 < A(i) < 1/2), Virasoro (closed string)
modes propagating along the cyIindﬁe;(l.).

4.2. The Ribbon graph insertion operators

In order to complete the picture, we need to discuss howMyp@amplitudes{A(j;)}
defined by(64) interact alongl". Such an interaction is described by boundary operators

which mediate the change in boundary conditi(fr(§éz;))))3pp and|fz(Sg?;)))apq between
any two adjacent boundary componedis, andal, (note that the adjacent boundaries of
the ribbon graph are associated with adjacent g&lip), p%(q) of |Pr;| — M, and thus

to the edges(p, ¢) of the triangulatior|7;| — M). In particular, the coefficients of the
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operator product expansion (OPE), describing the short-distance behavior of the boundary
operators on adjacedt, and oIy, will keep tract of the combinatorics associated with
|PTl| — M.

To this end, let us consider generic pairwise adjacent 2-péilg), p%(g) and p?(r) in
|Pr;| — M, and the associated cyclically ordered 3-valent verlw, g, r) € |Pr,| —
M. Let{U 0 4. W} the coordinate neighborhood of such a vertex, aﬁgh(p,q),z},
{Up1(g,r» 2} and{U 1, ), z} the neighborhoods of the corresponding oriented edges (the
Z's appearing in distinctU 1, ., z} are distinct). Consider the edgé(p, ¢) and two
(infinitesimally neighboring) points; = x1 + +/—1y1 andza = x2 + +/—1y», Rezy =
Rezo, in the corresponding]pl(p,q), with x; = xp. Thus, fory; — 0" we approach
ar, N pt(p, 9), whereas fol, — 0~ we approach a poir 377, N p(q, p).

Associated with the edgel(p, g) we have the two adjacent boundary conditions

|fz(S(§8)))app, and |I3(S(§?;)>))apq, respectively, describing the given values of the figld
on the two boundary componerts, N pl(p, ) andar, N p(g, p) of pl(p, q). At the

pointszy, z2 € Upi(p,q WeE Can consider the insertion of boundary operaﬂrﬁé’;) (z1) and

w;i}jz) (z2) mediating between the corresponding boundary conditions, i.e.
JaJ INGD) i
Vit @O Syip))or, oo |h(Spig))dary
Vieom GRS ar, = h(Sji)hor, - (65)

Note thatllfj:fpj; carries the single primary isospin labg) ;) (also indicating the oriented
edgepl(p, g) where we are inserting the operator), and the two additional isospin labels

Jp and j, indicating the two boundary conditions at the two portionsdff, and oI,
adjacent to the insertion edge (p, ¢) (Fig. 15. Likewise, by considering the oriented

edgesol(g, r) andpl(r, p), we can introduce the operatoﬁ#fr’;‘), wj(q]q) wj(l“’) andwj("r’p’).
In full generality, we can rewrite the above definition explicitly in terms of the adjacency

matrix B(I') of the ribbon graph™,

1 if pl(s, r)isanedge of ]

B = 66
s 0 otherwise (66)

according to

JaJp 7o) _ A ()
ij (Zl)|h(Sg(p))>8pr1:O+ qu(f)|h(59(q)))arq. (67)

Any such boundary operator, sary/'f:;’) is a primary field (under the action of Virasoro
algebra) of conformal dimension(p'.q), and they are all characteriz¢ti3—15] by the
following properties dictated by conformal invariance (in the corresponding coordinate
neighborhood/ 1, )
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Fig. 15. The insertion of boundary operators mediating the change in the boundary conﬂméf%))gpp and
|/’l(Sé(q))>3rq between the two adjacent boundary componénjsandor,.

O @10 =0 (h(sf) >|pr«f'ﬂ|h<s(“>>> = ar,

O @)W (22)10) = b7 21 — 2ol 2w s, (68)

wherel/r/r is the identity operator, and wheané»/» andbj’(”” are normalization factors.

In particular, the paramete ‘(””) define the normahzatlon of the 2-points function. Note
that [14] for SU(2) the bj‘”" are such thabj‘”” b””" (-1)%iva, and are (partially)
constrained by the OPE of th&"”” As custpor)nary in Boundary CFT, we leave such a
normalization factors dependence explicit in what followg( 16).

In order to discuss the properties of tia%’z), let us extend the (edges) coordinates
the unit diskU o, , », associated to the generic verte p, ¢, r), and denote by

_1 (1/2)n/—1
wy=3(e)€ € Upop.q.n N Upl(p.g)

_ 1 76y
wg=3(e)€ € Upo(p.gn N Uplign)

Wy =2¢8 e(ll/G)anl € U,Do(p,q,r) N Upl(h P) (69)

the coordinates of three points in ameighborhood (0< ¢ < 1) of the vertexw = 0
(fractions ofe are introduced for defining a radial ordering; note also that by exploting the
coordinate changdg), one can easily map such points in the upper half planes associated
with the edge complex variablescorresponding td/ 1, o), U,i(.», @andU s, ), and
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<0|¥ oy B |0>
Jp.a) J(a.p)

Fig. 16. The insertion of boundary operatapr'#([fz) in the complex coordinate neighborhotith,, . giving rise
to the 2-point function in the corresponding oriented edb@, ¢).

formulate the theory in a more conventional fashion). To these points we associate the
insertion of boundary operatogzs’"” (wy), w”" (wy), w"“” (w,) which pairwise mediate

among the boundary COHdItIOIﬁ*B(Sé(p))) |h(Sé(q))) and|h(5é8)). The behavior of such
insertions at the vertes®(p, g, ) (i.e., asc — 0) is described by the following OPEs (see

[13,14)

JpJ Jrl clvir Hj—Hj  —H, ipi
w.ﬁr( r)qu( q) Z pJrlq Jwy — wq| Y ) /(q,r)(wjp q(wq)_i_“.)7

J@,p) Jig.n JapJani
J

(70)

v )l w,)

Jg.n J(p.9)

_ ]r]q]p Hj—Hj( .)—Hj( 2 Jrip .
Z ol il wa = wpl 0w (YT (wp) + ), (71)

v v (w)

J(p.a) J@r,p)

_ JqJplr _ Hj—Hj( ! )_Hj(, ) Jqip .
= Z Cj(]xq)j(r,p)j'wp wy| P P (1//] (wy) + ), (72)
J

where the dots stand for higher order correctionguin— w,|, the H;, are the conformal
weights of the corresponding boundary operators, andfh’é)’j‘iq ,; are the OPE structure
constantsKig. 17).
As is well known[14], the parameterb"’"; and the constants’jg”')ﬁq( ,,; are not in-
dependent. In our setting this is a consequence of the fact that to the oriented vertex
0°(p, g, r) we can associate a three-point function which must be invariant under cyclic
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Fig. 17. The OPEs between the boundary operators around a givena¥itey, r) in the corresponding complex

coordinates neighborhoodso,, , .+ Upi(, o €LC-

permutations, i.e.

W )y () = W v )y (w,)

Ja.p) Jq.n J( J.a) .p)
— jrjq jqu jpjr
= (1/f‘,~(qy,)(wr)1ﬂj(pvq) (wq)wj(w) (wp))- (73)

By using the boundary OP&O0), each term can be computed in two distinct ways, e.g., by
denoting with underbrace an OPE pairing, we must have

Wy w7 w,)) = (W Y )y () (74)

Ja.p) Ja.n Jn.a) Ja.p) Ja.n Jw.a)

which (by exploiting(68)) in the limit w — O provides
Jpiriq Jpia _ ~driadp Jpr
Jo.p)J g J(p.g) bj(q,p) = Tlgniwaoiep iep (75)

(note that the Kroneckerin (68)implies thatj,. ,) = Jjip.q), €tC.). From the OPE evaluation
of the remaining two three-points function one similarly obtains

Jqiplr JaJr __ ~Jpirig Jaip

J(p.)J(r,p) J(q,r) ~ T(r,q) Jep)JgnJp.g) J(p.g)’

jrjqu jrjp _ jqujr jrjq (76)
Jg.nJ(p.g)Jp) ~ J(p.r) Jp.ayJap) @) Jgn®

Since

JpJq _qujp -1 Zj(p.q)
J(g.p) J(p.9) ) ’

JpJr jrjp 27, .ir./q jq./r 27,
b’ =b =D wn, b =P (=1)F e 77
J@p) J(p.r) =D Jg.n Jrng) =D ( )
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one eventually gets

]p]r]q ) ]:qu — (— 2j(q_p) Jq]p]r ) ]:rjq

Jr,p) J (g, J(p.9) bl(ti,p) ( 1) C./(p,q)./(n »Jqr) b!(q,r) ’

]:qujr. ) J:qu — (— Zj(r_q) Jt]q]p i .]:pjr

J(p.9)J(r,p)J(q,) ~ J(rq) ( 1) CJ(q.r)J(p,q)J(r,p) b/(hp) ’

]r]q]p ) J:rjp — (— 2./'(,,‘,) ]p]r]q ) ]:qu

Jq,n J(p.9) J(r,p) bJ(pm) ( 1) Cl(np)J(q,r)J(p,q) b./(p,q) ’ (78)
which are the standard relation between the OPE parameters and the normalization of the
2-points function for boundary S@) insertion operatorgl4]. Such a lengthy (and slightly
pedantic) analysis is necessary to show that our association of boundary insertion operators

‘/’jfr/,:) , to the edges of the ribbon graptis actually consistent with S@2) boundary CFT, in

particular that geometrically the correlat(@;rﬁ:_’p’) (w,)wj(’;‘:) (wq)wffp{f{) (w,)) is associated
with the three mutually adjacent boundary’compon@'m,a oI, andar; of the ribbon
graphI". More generally, let us consider four mutually adjacent boundary components
ar,, aly, oI, andaly. Their adjacency relations can be organized in two distinct ways
labeled by the distinct two vertices they generatérif is adjacent t@d /. then we have the
two verticeso®(p, g, r) andp®(p, r, s) connected by the edge (p, r); conversely, i1, is
adjacenttdr then we have the two vertice8(p, q,S) andpo(q, r, s) connected by the edge
p(g, s). Itfollows that the correlation function of the corresponding four boundary operators
(1#;(’”;) v wj(q"’) w;?p’:)), can be evaluated by exploiting theS{-channel) factorization
associated with the coordinate neighborhedh , . z'¥}, or, alternatively, by exploiting
the (7)-channel) factorization associated witti,, .. z'"}.

From the observation that both such expansions must yield the same result, it is
possible[15] to directly relate the OPE coefficients?””"* with the fusion

: JapJ@.nJp.q)
matrices

Jp Jq
Ej,j . .
e [Jmp) Jg.n) }

which express the crossing duality between four-points conformal blocks. Recall that for
WZW models the fusion ring can be identified with the character ring of the quantum
deformatiori/y (g) of the enveloping algebra @f evaluated at the root of unity given by

0 = eV=L&+h") (whereh" is the dual Coxeter number ards the level of the theory). In
other words, for WZW models, the fusion matrices are tfig@mbols of the corresponding
(gquantum) group. From such remarks, it follows that in our case (i.ec,fol, 1" = 2) the

structure constan@jﬁ’r’ﬁ i OT€ suitable entrig4 6] of the 6j-symbols of the quantum

group SUZ)Q:eWs)F, i.e.

ijjrjq _ { j(r-,P) jp jr (79)

Jepianivg — : : : )
R Jg  Jan Jpao }Q=e<n/3)ﬂ
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4.3. The partition function

The final step in our construction is to uniformize the local coordinate representation of
the ribbon graph™ with the cylindrical metrid|¢(i)|}, defined by the quadratic differential
{#(i)}. In such a framework, there is a natural prescription for associating to the resulting
metric ribbon grapr(F {lo()|}) a factorization of the correlation functions of thg in-
sertion operator§yr f ”)} (recall thatN; is the number of edges d@f). Explicitly, for the
generic vertex®(p, g, r), let zpo €Upiip.g) NU0p.g.r) zg‘” € Upigry NUp 0.4 aNd

( ) eU plirp) N U 0(p.q.r)» FESPECtively, denote the coordinates of the pairgsw,, and
wy (see(69)) in the respective edge uniformizations, and for notational purposes, let us set
(in ane-neighborhood ot o, , »y =0 € Uy 4.1)

VI O g =T @) (Op g = ),

J@rp) Jig.r) Jiq.r)
Jai JaJ
Vi (0°(p. g IN=YIE (). (80)

Let us consider (in the limi¢ — 0), the correlation function

No() _
< '®1 aIy; ®]i>
i=

Na(T) .

< [T vi” @@ a vl e a.mvl” °p.q, r>>> (81)
{PO(p.q.n}

where the product runs over the(7) vertices{°(p, ¢, r)} of I'. We can factorize it along

the N1(7) channels generated by the edge coordinate neighbortidbgs, .} according
to

No(D Neld Jpir  Jria Jai g Jpir i
. R p— pJr rJq qJ/p pJr rJp
< Sl % ®‘]l> - Z 1_[ <w/(r ») w/(qt)w/(p q)> 1_[ <w/(r,l7) 1‘01(17 r)> (82)
{emH e (p.q.r)} 00(p.q.r) {oX(p.N}  pl(p.r)

where we have set

(Wi w eyl Y=t (0p, q. oW (0%, g W (b . ),

J@r.p) J(q.r)
AO(p.q.r)
(83)
(Wi wi e V=t (0%, g W (0. ) (84)
pL(p,r)

and where the summation runs over al{(7) primary highest weight representation
51(2) =1, labeling the intermediate edge chanrig{s,, }. Note that according t58)we can
write
Jpdr  drip Jpir "
<1/szr-p) I/fj(p,lr)) blz p)L(p’ r) J( ” (85)
)
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(recall thatj(, ,) = jp.n), WhereL(p, r) denotes the length of the edgé(p, r) in the
uniformization(Upl(p,,), {l¢(0)|}). Moreover, since (se@'5))

jp].r jrjq jqu _ ijjrjq bjqu 86
<w1(n17) 1//J(q,r) 1'bl(lw)> Jep)JgnJ(p.g) Jg.p)’ ( )
0%(p.q.r)

we getforthe boundary operator correlator associated with the ribbon Grtyglexpression

No(T) R wig B0 2H
. -\ 'pJriq ) 'pJq 'pIr (Y]
< E’l l; ®]’> - Z H CJ(np)J(q,r)./(p,q)bl(q,p) l—[ bJW)L(p, ) .
lie.m e (p.q.r)} {pt(p.n)}
(87)
Jpiriq

By identifying eachC with the corresponding gsymbol, and observing that

Je:pianieo
each normalization factdrj’.g’z) occurs exactly twice, we eventually obtain

No(T) . . .

No(D) . J@, J J

(Soriei)= ¥ I { o }
= i) (2(pg.y U 79 @0 J®a) ] o _emanvms
N1(T) o -
Jpir 2 —2Hj,
x l_[ (bj(r,p)) Lp,ry =, (88)
{pX(p.r)}

As the notation suggests, such a correlator has a residual dependence on the representa-
tion labels{j;}. In other words, it can be considered as an element of the tensor product
HOD) = ®5V=“’£D7-L(,~). Itis then natural to interpret its evaluation over the amplityaes; ) }
defined by(64) as the partition functio@V*W (| Py, |, {E(Séz;)))}) associated with the quan-
tum amplitude(55), and describing the S@) WZW model (at levek = 1) on a random
Regge polytopgPr,| — M. By inserting theNo(T) amplitudes{A(j;)} into (88), and
summing over all possible representation indicgg we immediately get

VAR (TARTICHO!

1\ No(D Na(T) Jop Jn jr
@7

UkeWDZe) lian) (P(pgry U J1 J@n ]<P"f)}Q=e<”/3>”

G I No(1) —(4n/0(p)) 5

JpJr N2 —2Hj, 4 € "
. | | (bj<np>) L(p,r) "p) . | | COS(SHJP)L(p))m, (89)
{ot(p.n)} {0?(p)}

where the summatiod;, (1,27, is over all possibleVo(7) channelsj, describing the

Virasoro (closed string) modes propagating along the cylinde%()},]:’ﬁ(ln. This is the
partition function of our WZW model on a random Regge triangulation. The WZW fields
are still present through their boundary labglg) (which can take the values 0/2),
whereas the metric geometry of the polytope enters explicitly both with the edge-length
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D2 e

Fig. 18. The dual channels in evaluating the correlation function of the four boundary operators corresponding to
the four boundary components involved.

termsL (p, »)~2"ie.» and with the conical angle factofs™“™/(P)J5 /e~ (“1/9())) Note
that(89)is modular invariant by its very construction: the (quantum) glueing of the various
coordinate patchef/ i, ,). 2} which define the theory on the Riemann surfa¢ere

realized by the boundary insertion operahpﬁ%_’;) in such away that any four such boundary
insertion operators, corresponding to pairwise adjacent coordinate patches, have a correlator
which is invariant under the passage frosi-channel ta 7)-channel factorization (see the
analysis precedingig. 18. Such an invariance is the representation of the polytopal flip
move in terms of boundary insertion operators, and implies the modular invariance of
A (TA) {h(Sé:r)))}). A related point is the study of the behavior (89) under Dehn
twists, and the associated computation of the central charge of our proposed WZW model
on a random Regge triangulation. This is an important point gi8@gis by construction

a WZW partition function on a Riemann surface with boundaries and it is not clear how
such a WZW model is related to the standard WZW model on the corresponding surface
without boundary. Itis perhaps interesting to remark that such a comparison between the two
partition functions, which we defer to a forthcoming paper, is relevant as long as we consider
Regge triangulations nothing more than approximations to smooth Riemannian surfaces.
However, in our opinion there is an alternative point of view, more fundational in spirit,
which consider (random) Regge surfaces as basic extended object which show in a very
explicit way the structure of the quantum coupling between curvature and conformal fields.
For instance, the expreSS|on25WZW(|PT,| {h(S(+))}) shows very clearly the mechanism
through which the S(2) fields couple with S|mpI|C|aI curvature: the coupling amplitudes

{A(j;)} can be interpreted as describing a closed string emitte@i by~ Se(,(l)), or rather

by the% brane image of this boundary component in(3}Jand absorbed by the brane
Sg(l) image of the outer bounda@é (the curvature carrying vertex). This exchange of

closed strings between 2-branes m(S}J: $3 describes the interaction of the quantum
SU(2) field with the classical gravitational background associated with the edge-length
assignment§L(p, r)}, and with the deficit angle& (i)=2r — 6(i)}. One may consider
such a behavior as an artifact of the Regge geometry and thus, in the spirit of critical
field theory, put more emphasis on the existence of critical points in the theory allowing
us to recovery standard WZW theory on a smooth Riemann surface. However, we may
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Fig. 19. By uniformizing the ribbon grapfi with the cylindrical metric, and by edge-vertex factorization, we can
formally establish the general structure of the partition function for WZW theory on a random Regge polytope.

jirer

consider the situation from a different point of view. A Regge surface is no longer a discrete
approximation to a smooth Riemannian manifold, it rather encodes the interaction pattern
for describing the elementary quantum coupling between geometry and matter fields. This
latter point of view, and in particular its geometrical realization in terms of open/closed
strings propagation, as hinted above, is very much in the spirit of open/closed string duality
and string field theory. It may represent a new manifesto for Regge like techniques in
guantum gravity£ig. 19.

5. Concluding remarks

From a critical field theory point of view, 2D gravity can be promoted to a dynamical role,
in the above framework, by summitig§9) over all possible Regge polytopes (i.e., over all
possible metric ribbon grapig; {L(p, r)}}). Itis clear, from the edge-length dependence
in (89), that the formal Regge functional measuteﬂ{pl(p,r)} dL(p, r), involved in such
a summation, inherits an anomalous scaling related to the presence of the weighting factor
(to be summed over all isospin channgls p))

N-
1(T) _om,
[T £p.n e, (90)

{pt(p.)}
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where the exponent;,  } characterize the conformal dimension of the boundary in-

sertion operat0r$w‘;£':)}. A dynamical triangulation prescription (i.e., holding fixed the

{I{(p, r)} and simply summing over all possible topological ribbon grafhy feels such

a scaling more directly via the 2-point functigé8), and(85) (again to be summed over

all possible isospin channejgr, p)) which exhibit the same exponent dependence. Even

if of great conceptual interest (for a non-critical string view-point), we do not pursue such
an analysis here. We are more interested in discussing, at least at a preliminary level, how
(89) relates with the bulk dynamics in the doubifg; of the 3-manifoldV,; associated

with the triangulated surfack#. Such a connection manifests itself, not surprisingly, with

an underlying structure a2W2W (| Py, |, {IQ(S;;;)))}) which directly calls into play, via the
presence of the (quantum)-8ymbols, the building blocks of the Turaev-Viro construc-
tion. This latter theory is an example of topological, or more properly, of a cohomological
model. When there are no boundaries, it is characterized by a small (finite dimensional)
Hilbert space of states; in the presence of boundaries, however, cohomology increases and
the model provides an instance of a holographic correspondence where the space of con-
formal blocks of the boundary theory (i.e., the space of pre-correlators of the associated
CFT) can be also understood as the space of physical states of the bulk topological field
theory. A boundary on a Riemann surface, for instance, makes the cohomology bigger and
this is precisely the case we are dealing with since we are representing a (random Regge)
triangulated surfacd;| — M by means of a Riemann surface with cylindrical ends. Thus,

we come to a full circle: the boundary discretized degrees of freedom of t(@ SIZzW

theory coupled with the discretized metric geometry of the supporting surface, give rise
to all the elements which characterize the discretized version of the Chern—Simons bulk
theory onVy,. What is the origin of such a Chern—Simons model? The answer lies in the
observation that by considering ) valued maps on a random Regge polytope, the nat-
ural outcome is not just a WZW model generated according to the above prescription. The
decoration of the pointed Riemann surfd¢&f; No), C) with the quadratic differentiap,
naturally couples the model with a gauge fidldn order to see explicitly how this coupling
works, we observe that on the Riemann surface with cylindrical édisassociated with

the Regge polytopgPr,| — M, we can introduceu(2) valued flat gauge potentials;

locally defined by

Ay =vi |:\/ o (i) (&0-3) — EL(i) (Mcg) din |§(i)|j| yfl
K 2T K
V-1 A0) _p ey dz()

=g MOV ( « °3> " ( OO ) ’ oD
around each cylindrical enﬁ;(i of base circumferencg (i), and wherey; € SU(2). (It
is worthwhile to note that the geometrical role of the connectiép} is more properly
seen as the introduction, on the cohomology gr&i(M, No); C) of the pointed Riemann
surface((M, No); C), of an Hodge structure analogous to the classical Hodge decomposi-
tion of H"(M; C) generated by the spac#$” " of harmonich-forms on(M; C) of type
(r, h — r). Such a decomposition does not hold, as it stands, for punctured surfaces since
HY((M, No); C) can be odd-dimensional, butitcan be replaced by the mixed Deligne—Hodge
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Fig. 20. The three-dimensional tetrahedron associated with the Schottky da#Bble

decomposition.) The actloﬁNZW(n) gets correspondingly dressed according to a standard
prescription (see e.g11]) and one is rather naturally led to the familiar correspondence
between states of the bulk Chern—Simons theory associated with the gauge &eldithe
correlators of the boundary WZW modé&lig. 20).

Let us also stress that the relation betw&9) and a triangulation of the bulk 3-manifold
Vu, say, the association of tetrahedra to the (quantujrgydnbols characterized Ky9),
is rather natural under the doubling procedure giving riséjand to the Schottky double
MP. Under such doubling, the trivalent verticés®(p, ¢, )} of |Pr,| — M yield two

preimages iV, sayo(y (@) andoy (), whereas the outer boundari p)), Sé&)), Sézg
associated with the verticed(p), 0°(¢), ando®(r) in |T;| — M are left fixed under the

involution Y definingMP. Fix our attention omr%) (a), and let us consider the tetrahedron
ol (p, g, 1, @) with base the triangle?(p, ¢, r) € |Ti| — M and apex 3 («). According to
our analysis of the insertion operath,sj’.(”r’p’) 1, to the edges(p, ¢), o1(g, r), andal(r, p)

of the triangles?(p, ¢, r) we must associate the primary lab@lp, ¢), j(g, r), andj(r, p),
respectively. Similarly, it is also natural to associate with the ed@gSp, a), 0(13) (g, @),

ando(13) (r, ) the labelsj,, j,, andj,, respectively. Thus, we have the tetrahedron labeling

o0y (P q. 1) = (G(P, @), (G, 1), JC5 D) s gs Jr)- (92)
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The standard prescription for associating the (quantujrgydnbols to a S\(R) o-labeled
tetrahedron such a§’3) (p, q, r, @) provides

Ja.p Jp Ja

0?3)([7’ 517 I, a) = { ’ (93)

Jr Jan e }Qzew/swi

which (up to symmetries) can be identified w{f#B). In this connection, one can observe

that the partition functiori89) has a formal structure not too dissimilar (in its general rep-
resentation theoretic features) from the boundary partition function discusiggdbnt we
postpone to a forthcoming paper a detailed analysis of such a correspondence since it needs
to be framed within the broader context of a study of the properties of the Chern—Simons
bulk states associated ¢89).
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